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INTRODUCTION 

If one thinks about quantum mechanics as a realization of some new 
quantum logics corresponding to non-Boolean lattices then one can ask the 
question: are there some systems or situations, maybe apart from microphys- 
ics, which are realizations of quantum logics? Examples of such realizations 
are very important because by using them we can simulate microscopic 
quantum systems by macroscopic ones. 

This also can be useful for computation in quantum physics. For exam- 
ple, it is well known that instead of solving some nonlinear equation like 
Atp= -4~  exp(-2atp) one can just take an electrolyte and measure in it the 
electric potential ~p in different points. In such a way a mathematical calcula- 
tion can be simulated by a physical experiment. 

In this sense we can contemplate a "quantum computer" being a macro- 
scopic device working according to "quantum logic" corresponding to non- 
Boolean lattices of properties of a quantum microparticle (proton, quark, 
etc). This device could give answers on many questions in particle physics. 
The other practical use of such a "quantum computer" is, as discussed in 
Deutch (1985), the possibility of a new kind of calculation due to the exist- 
ence of noncommuting observables. For example, using measurements of 
coordinates and momenta, one could very rapidly perform Fourier trans- 
form of a function. 

In this paper we give examples of such macroscopic realizations for 
simple cases simulating one- and two-particle systems with spin 1/2. 

D. Finkelstein was the first to see the correspondence between quantum 
lattices and graphs which makes it possible to find macroscopic realizations 
of quantum logics. To illustrate the idea, consider a very simple quantum 
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system: a particle with spin one-half which is described by two projections 
of  spin ~ and Sx. The lattice of  properties of  this particle is an orthomodular 
nondistributive lattice: 

0 I 

1 0 0 4  

To this lattice there corresponds the graph (Finkelstein and Finkelstein, 
1982) 

Z Ii 
Now consider the opposite question: in what sense does the nondistribu- 

tive lattice correspond to the graph? Let 1, 2, 3, 4 be states of  some system 
(e.g., an economic one) and suppose that there is an observer who tries to 
check the state of  the system by putting questions to it. The system has the 
following property: it can answer "yes" to the question "are you in 2?" not 
only if it is in 2, but also if it is in 1 or 3. It can change its state by one step 
responding to the question if and only if corresponding states are connected 
by an arc. But let the observer be clever enough to know this property of  
the system: then he or she must use some "negative logics," and concludes 
that the system is in 2 if to the question "are you in 4?" a negative answer 
is obtained. So by a negative answer to a complementary question the 
observer can know the real state of  system. But then it is easy to see that 
one can find no such questions the negative answer to which corresponds to 
the state "1 or 2," "2 or 3," and so on. This means that in our "negative 
logics," "1 or 2" coincides with/ ,  "any state." One cannot find any difference 
between disjunctions 1 v 2, 2 v 3, 3 v 4, 1 v 4, and L That  is why the lattice 
is nondistributive, 1 v 2 is t r u e / f  1 is true, 1 v 2 is true if 2 is true, but not 
only/f: 1 v 2 can be true when both 1 and 2 are false. 

It is easy to see that our observer cannot use classical probability theory 
for the system he or she controls, because there is no probability measure 
for a nondistributive lattice. For  example, in the symmetrical case, the prob- 
ability of  each state must be 1/4. But since 1 v 2 = / ,  the probability of 1 v 2 
must be equal to 1, but it is equal to 1/4 + 1/4 = 1/2. In the following sections 
we give some rigorous results for constructing macroscopic realizations of 
quantum logics. 
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The possibility of simulating quantum systems by classical automata 
described by graphs is important for two reasons. The first one is that it 
gives the way to construct quantum computers--automata composed of 
classical elements but working analogously to quantum systems due to quan- 
tum logics. The second reason is that it has the profound meaning of showing 
why we can speak about quantum objects in terms of classical experiment. 
In some sense it corresponds to Liidwig's (1989) extreme point of view that 
"atoms do not exist" and only classical measuring apparata really "exist," 
and "quantum objects" are merely a language describing relations between 
classical bodies and logics of these relations. 

Nevertheless we consider Ludwig's interpretation extreme because class- 
ical bodies "consist" of quantum objects, but not the opposite, and macro- 
scopic quantum mechanics gives us reason to believe that there are no purely 
classical objects. 

After constructing graphs and property lattices for one- and two- 
particle systems we give the rule for defining the wave function in terms of 
weights on graphs. Then we show how Bell's inequalities can be violated on 
graphs. This yields an example of Bell's inequalities breaking for classical 
systems with non-Boolean logics. 

At the end of the paper we discuss the problem of wave packet reduction 
for two-particle system, which is connected with the Boolean nature of con- 
sciousness. Properties described by non-Boolean lattices do not correspond 
to events in Minkowski space-time and there is no usual probability attached 
to them. It is only due to the "Booleization" of the lattice by an observer 
that they become events. This Booleization is done by means of time, namely 
the observer can check values of noncommuting observables by measuring 
them at different moments of time. So, the observer must move in time in 
order to apprehend through her or his Boolean consciousness the non- 
Boolean properties of quantum system. We think this can be an explanation 
of why we all move in time. 

1. GRAPHS ASSOCIATED WITH PHYSICAL SYSTEMS 

Consider an experimental plant with two kinds of controls: the source 
and the analyzer. It is assumed that the source prepares the plant, and the 
analyzer can be tuned to verify some finite set of properties. The result of 
each verification is the answer: either YES or NO. The procedure of 
verification is also called putting the question. So, the observer can: 

1. Change the parameters of preparation by tuning the knobs of the 
source. 

2. Put different questions by pressing the but tons  (controls of the 
analyzer) and obtain answers.  
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Now let us enumerate the control buttons of  the device by 1, 2 . . . .  , N. 
Let ni be the total number of  checks of  the question i (pressing the button 
i, i = 1 . . . .  , N) ,  and let me be the number of  answers YES to the question i. 
If  under multiple trials the stable frequencies appear 

Pi = mi/ni 

for each question i=  1 . . . . .  N, we way that the setted positions of the con- 
trols of the source provide the preparation of a certain state. The state will 
be identified with the set of  frequencies p;. Since the trials are independent, 
we are not able to discern positions of  the knobs of  the source but yielding 
the same sets of  stable frequencies. Therefore the set of  all states observed 
in the described experiment is identified with the set of  all collections p; we 
can observe in this experiment. These collections evidently form a subset 0 
of  an N-dimensional cube: 

0c[0, 1F 

The set of  states is convex, since we can always insert a classical roulette 
to our plant which presses buttons j,  k with any prior probabilities ~, p, 
A.+/~ = 1. 

Consider two questions j,  k. Consider the set Oj of  all states of  the object 
for which there is also the answer YES to the question j. If for any state 
from Oj the answer to the question k is always NO, then the question j is 
called excluding the question k; denote it byjlk. 

If the questions j, k do exclude each other, they are called mutually 
exclusive, or orthogonal:  

def 

j_Lkce.jL k & k L j 

The relation 3_ on the set N of all buttons (questions) is symmetric. 
Consider the relation P, which is the complement (in the set-theoretic sense) 
of  

jPkc~j ~ k 

Following Finkelstein and Finkelstein (1982), we call the graph of  the 
relation i the O-graph of  the object, and the graph of  P is called the P-graph 
of the object. Both are nonoriented. 

We consider P-graphs further. We shall call them graphs of objects. 
Briefly: 

The graph of the object is the graph G whose vertices 1 . . . . .  N are 
associated with questions, and edges connect nonorthogonal vertices, and 
only them. 
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The result of any individual experiment can be considered as the out- 
come of  a trial. In accordance with the conventional theoreticoprobabilistic 
approach a property of  the object is a subset of the set of  elementary out- 
comes. In the described situation the space is the space of  all questions, or, 
in other words, the set of  all vertices of  the graph of the object. Consider in 
detail which subsets of  this set can be called properties. 

Let A be a property and let the object be emitted by the source in a 
state W= {Pi}. The first way to define a property is to say: the object 
possesses A iff the answer YES is obtained with probability 1 for any ques- 
tion contained in A. However, this definition is not operationalistic. Indeed, 
in each experiment we put only one question from the collection A. Yet this 
does not assure us that to any other question from A a positive answer is 
obtained, too. 

The second way we propose to define a property is to convince oneself 
that the object does not possess the property A. That  means that for each 
question orthogonal to each question from A the positive answer is always 
obtained. This set of  questions will be called the negation of A, or NOT A: 

A = N O T  A = { j lVkeA , j l k }  

A property of  the object is defined as a subset of  the set V of vertices 
for which the double negation rule is valid. Denote the set of all properties 
of  the object by L: 

L = { A c V I A = A }  

The set L is an ortholattice possessing three operations: 
1. Negation A ~ A • The operation is an involution in accordance with 

the definition given above: 

A •  

2. Meets (conjunctions) A A B are defined as set-theoretic intersections: 

A ^ B = A n C  

3. Joins (disjunctions) A v B are defined following De Morgan's law: 

A v B = ( A  l A B •  •  

These operations really form an ortholattice structure on the set L since 
this is a special case of  the Birkhoff-Ore polarity construction. 
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2. FROM GRAPHS TO LATTICES AND BACK 

The algebraic feature of the property lattices of graphs allow us to 
formulate an unambiguous algorithm for constructing the property lattice 
by a given graph G. This algorithm consists of two stages. At the first step 
the maximal proper (not coinciding with the greatest element of L) elements 
are built. At the second step all their possible intersections are built. Let us 
consider this in detail. 

Given a nonoriented graph G, denote by V the set of its vertices, and 
by E the set of its edges. 

Step A. For each vertex jE V consider the set {j}" of all vertices not 
connected with j, 

{j}• {k~ V/(k,j)gE} 

Step B. Form all possible intersections of {j} • placing them into the 
Hasse diagram. 

We consider several examples. For brevity we omit the brackets denot- 
ing collections: e.g., 23 means {2, 3} and so on. 

Example 1. The totally disjoint graph of these vertices: 

G = 1 " 2 " 3  *, V={1,2,3},  E = ~  

StepA. 1• 2• 31=12. 
Step B. 23 n 13=3, 23 n 12=2, 13 n 12= 1. Place the obtained six 

elements 23, 13, 12, 3, 2, 1 into the Hasse diagram, adding the greatest 
( I= V= 123) and the least (0) elements of L: 

123 

L - 1 2 J  1~ ~ 2 3 = 2 3  

-i i 
1 ~ 2 ~ 3  

We see that L is the Boolean lattice 2 3. Moreover, for any N-vertex 
totally disjoint graph the property lattice is always the Boolean lattice with 
N atoms. 

Example 2. This graph will be used in simulating Bell's inequalities (see 
Section 6). 1 

I 4 3 
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Step .4. 1• 2• 3• 4• 
Step B. No more elements, although 

1234 

L = I  2 3 4=M4 

In this case L is a nondistributive modular ortholattice M4 with four 
atoms. 

Example 3. This graph yields a nonmodular ortholattice: 

1 2 3 4 5 
a ~  ~ �9 �9 

Step A. 1• 2• 3 • 15, 4 • 5 l =  123. 
Step B. 345 n 15=45 n 15=5, 345n 123= 3, and 

15 n 12= 15 n 123=1 

We have 

L= 

12345 

123 15 345 

1 1 ~  ~ 4 1  

1 3 5 

One can see that L is neither distributive nor even modular. 
As already mentioned, given a finite ortholattice L, one can always 

construct a graph G whose property lattice is L. Consider the algorithm for 
the reconstruction of a graph by its property lattice. 

Given a finite ortholattice L with orthocomplements denoted by • an 
element j eL  is called join-irreducible if it cannot be represented in L as a 
join of elements different from j. 

Step 1. The set V of vertices of a future graph G is the set of all nonzero 
join-irreducible elements of L: 

V= {jeLI3k, I/k ~j, l~j, k v  l=j} 

Step 2. Examples of the edges of G connecting nonorthogonal elements 
of lattices are (i) 1, 2, 3; (ii) 1, 2, 3, 4; (iii) 1, 2, 3, 5, 12, 45. 
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Example 4. Consider 

I 
3 

2 
I 11 = 4 ,  
4 

2 : = 3  

Step A. Join-irreducibles are 1, 2, 3, 4. 
Step B. 1 is orthogonal only to 4, thus it must be connected with 2 and 

3. 2 is orthogonal to 3 only, so it is joined to 3 only, so it is joined with 1 
and 4.3 is orthogonal to 2 and 4 and is connected only with 1. Analogously, 
4 is connected only with 2. The graph G is 

4 2 1 3 

We emphasize that given an arbitrary graph G, we can construct its 
property lattice L and then reconstruct the graph in accordance with the 
algorithm described above, through we get in general a subgraph of G. For 
detailed mathematical treatment of this question see Zapatrin (1990, n.d.). 

3. LOGICAL DESCRIPTION OF SPIN-I/2 PARTICLE 

Grib and Zapatrin (1990) describe spin-1/2 particles in terms of graphs 
endowed with probabilistic weights. For our purposes we shall need a more 
special construction, namely, we restrict spin measurements to the situation 
of the graph G of Example 2, 

whose vertices are associated with the following questions: 

1. " sz  = + 1/27" 
2. "Sx= +1/2? '' 
3. " s z = - 1 / 2 7 "  
4. "'Sx = -1 /2?"  
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to which correspond the following vectors in the state space H =  C 2 of  the 
particle: 

3. 

4: <X_l=e,=Z-lJ2(i ) 
As mentioned in Section 1, an observable state of  the object is associated 

with the collection of  weights pl ,  �9 �9 �9 p4 assigned to the vertices of  G. These 
weights are not arbitrary; evidently for any state {Pt} 

O<_pi<_l, i = 1 , 2 , 3 , 4  

Pl +P3 =P2 +P4 = 1 

A pure state in the experiment in question is the state corresponding to 
the definite value +1 of  the spin projection on an axis in the XZ plane 
forming an angle y (0 _< y _ 2~r) with the Z axis. In C 2 this state is described 
by the vector 

( p l = (  c~ Y/2 / 

\sin )'/2] 

Therefore, in accordance with the traditional quantum rules the weights, 
Pi are 

For two states 
I(plq)l 2. If  

e ; =  I(plei)l 2, 

pl = cos 2 ),/2, 

p3 = sin 2 ),/2, 

(Pl and 

i=1 ,2 ,  3 ,4  

p2 = (1 +sin 7) /2  

p4 = (1 - s i n  ),)/2 

(ql the transition probability is equal to 

cos ~/2  / 
( q l -  \sin t~/21 
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epq= I(plq)12 = cos2( 7 -  S) /2  

In terms of weights on graphs the transition probability can be directly 
calculated and has the form 

or, equivalently, 

where K= 0, 

4 

PPq = E Pi q i -  1/2 
i=1 

Pj, q =piTkiqk + K 

f 
l, if i=k 

T~= 0, if i l k  

t . -  1/4 otherwise 

and the summation by repeated indices is performed over all vertices of G. 

4. COUPLED SYSTEMS 

First we briefly recall what is meant by the graph description of a 
quantum system S associated with Hilbert space H. We select some proper- 
ties (closed subspaces of H)  and associate with them vertices of a graph G. 
The edges of the graph G connect only the vertices associated with nonortho- 
gonal subspaces. The obtained graph G is called the graph of the system S. 

Now consider two quantum systems Sj and $2 associated with Hilbert 
spaces HI and//2 and graphs Gj and G2, respectively. The Hilbert space of 
the compound system S is the tensor product H =  H| Building the graphs 
G1 and G2, we select some subspaces in H~ and//2.  All pairwise products 
of those subspaces generated a collection of subspaces of H. To each sub- 
space of this collection we associate a vertex of the product graph G. Thus, 
the set of vertices of G is the set of all ordered pairs of vertices of G~ and 
G2. The orthogonality on the set of such pairs is inherited from the lattice 
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L(H), namely for i, i ' lL (Hi )  and k, k'eL(H2), 

(i, k)_l_i', k') r i l k  or i'_Lk' 

Thus, the edges of the product graph connect two vertices (i, k) and 
(i', k') if both pairs of vertices i, i' of G~ and k, k' of G2 are connected by 
the edges of G~ and G2, respectively. 

Now consider two spin-l/2 particles and restrict possible spin measure- 
ments on the X Z  plane. This situation is described in Section 3. 

The product graph G = Gj x G2 has 4 x 4 = 16 vertices of the form ik, 
where i = 1, 2, 3, 4. In accordance with the above definition, the graph G has 
the following form: 

11 

21 

31 

41 

11 

12 13 14 11 

21 

31 

41 

12 13 14 11 

This is the planar development of the product graph G (vertices labeled 
by the same indices are identical). 

When a system S is represented by its graph G the (experimentally 
distinguishable) states of S are described by endowing the vertices of G 
with probability weights (interpreted as the possibility of occurrence of the 
corresponding property). Let S be initially in a state A = {a;} described by 
a collection {ai} of probability weights on the vertices of G. Then the prob- 
ability of finding S in a state B = {bp} is calculated by the transition probabil- 
ity formula: 

PAn = aiTibp + k 

where summation by repeated indices is performed over all vertices of G. 
Here T p is a symmetric matrix and K is a constant, both depending only on 
the form of the graph G. Denote the set of all states on G by ~(G). 

Here we consider the graph G whose vertices are labeled by double 
indices. Since G is a product graph we can consider two kinds of states. 
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Factorizable states are represented as pairwise products of weights on G~ 
and G2. In other words, for {cik)eO(GI | 

({Cik) is factorizable) 

def 

<:> 3{a,} ~ ( G , ) ,  3{b~} EO(G2)IC~k =a~k 

If this condition does not hold for a state Cjk, it is called nonfactorizable. 
The transition probability formula for the graph G has the form 

where K= 5/4, and 

PcD = Cik T~deq + K 

t 
l if p = i a n d q = k  

Tik = 0 if p_l_i and q l k  

- 1/4 otherwise 

[for graphs G~, G2 from Section 3, p_l_i means p - i = 2 (mod 4)]. 
The values of T~ and K can be obtained from the requirement of 

correspondence with traditional quantum mechanical results. In general, 
given the matrices T, e and T~ and the constants K~ and K2 for the graphs Gm 
and G2, one can obtain the matrix T,ekq and the constant K for the product 
graph G=G~| from: (a) the requirement that both T,ek q and K do not 
depend on the values of weights (i.e., they are really constants), and (b) the 
assumption that the two systems Sl and $2 are independent and thus for any 
pair of factorizable c~=aibk and dpq = tiSq the transition probability is the 
product 

Pc,  = P A rP Bs 

where C= {C~k} . . . . .  S= {Sq}. 
NOW construct the property lattice L(G) corresponding to the graph G. 

The maximum element I of L(G) is the 16-element set V(G) of all vertices 
of the graph. The upper row has 16 elements of the form {i*, *k}, where * 
runs over 1, 2, 3, 4. Each element of the upper row of L(G) is a 7-element 
subset of the set V(G) of all vertices of G. The next row downward consists 
of elements of three kinds: {i*} and {*k}, which are 4-element subsets of 
V(G), and {ik, lm} (i~l, k r  the 2-element subsets. The direct calculation 
shows that there are 4 elements of the form {i*} and {*k} and 72 elements 
of the form ik, Im (i~ 1, k~rn). The next row is the lowest. It consists of 16 
elements which are one-element subsets ik corresponding to each vertex 
ikE V(G). At the bottom of L(G) is the void set ~ .  Thus, we have completely 
described the property lattice L(G) as the lattice of subsets of V(G) partially 
ordered by set-theoretic inclusion. 
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The Hasse diagram of the lattice L(G) consisting of 1 + 1 6 + 8 0 +  
16+ 1 = 114 elements is too complicated for typographical representation. 
However, its representation by means of graphs is unambiguous. The mathe- 
matical treatise of questions concerning graph representations of ortholatt- 
ices is given in Zapatrin (1990, n.d.). 

5. NONLOCAL QUESTIONS 

The permutation operator has two eigenvalues: =t= 1. To - 1 corresponds 
the vector (q_lin H: (q-I = 1/x/2 (el2-e21), and to + 1 corresponds its ortho- 
gonal complement. 

First we introduce into the graph G a new vertex corresponding to the 
following question for the system: is the wave function antisymmetric? The 
vertex q associated to this question is connected with other vertices of G 
according to the rule described in Section 2: two vertices are not connected 
by an arc if the subspaces associated to them are orthogonal, otherwise we 
draw an arc. Calculating directly the scalar products (q-like, we obtain that 
(q-I is orthogonal only to vertices 11, 22, 33, and 44. Thus, the vertex q_ 
must be connected with all vertices of G except the above mentioned. We 
can also introduce the vertex q§ associated with the subspace corresponding 
to + 1. In this case we should connect q§ with all vertices except q_. However, 
this vertex q§ will be redundant, namely the property lattice of this graph 
will be isomorphic to that of the graph H. 

The graph H obtained from G by adding the vertex q_ is 

11 12 13 14 

O 2 1  ONN q / / O 2 3 ~  
~ 2 4  

41 42 43 44 

Only additional edges are shown; edges of G are omitted. 
The property lattice L(H) can be constructed from L(G) described 

in Section 2 by adding two new elements. The first of them {q_} is an 
atom (placed in the lowest row together with {ik}'s). The other one 
{ 11, 22, 33, 44} is placed in the upper row. Also the vertex q_ must be added 
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to 2-element subsets of the form {ik, ki} of the middle row. This completes 
the description of the lattice L(H). 

6. BELL'S INEQUALITIES AND THEIR BREAKING IN TERMS 
OF GRAPHS 

Let X, Y, Z be some elementary questions, and X, Y, Z be their nega- 
tions considered for a graph G. An elementary question means checking 
being in the state described by the collection of vertex weights {aq}~ where 
q runs over all vertices of a graph. The negation of a question {aq} means 
checking being in the state described by the collection {~q}, ~q = 1 - a q .  

Then consider a compound system of two identical objects which is 
prepared in such a way that if we put one of the questions X, Y, Z to the 
first object and the same question to the second one we always obtain exactly 
one YES and one NO. One can also put different questions to the objects. 
An answer to the question X to the first object is obtained, and we immedi- 
ately know the answer to this question to the second object (namely, the 
opposite answer). Then one could ask about the validity of Bell's 
inequalities: 

P(X1Y,) + P(X~Z,) >_ P(Y,Z,) 

However, no one of the questions XI, Yl, X~Z~, and Y~, ZI can be put 
directly. So to convert Bell's inequality to measurable form we equivalently 
have 

P(Xt Y2) + P(X,Z2) > P(Y,22) (6.1) 

where, for example, P(X~ ~2) is the probability to obtain YES for the ques- 
tion X to the first object and NO for the question Y to the second object. 

Now let both objects be described by the graph Gt(G2) (Section 3). This 
graph simulates spin measurements on a spin-l/2 particle restricted to the 
XZ plane. Consider three elementary questions. Let X = " S ~ =  1/2?," Y= 
"Sa = 1/2," and Z =  "S_- = 1/27," where a is an axis in the XZ plane forming 
the angle a with the z axis. These questions induce the following weights on 
the vertices 1, 2, 3, 4 on the graph G: 

X: x l=x3 = 1/2, x2 = 1, x4=0 

Y: y~=(l+sina)/2, y2=(l+cosa)/2 
(6.2) 

yty3= (1 - s i n  a)/2, y4=( l  - c o s  a)/2 

Z: z1=1, z2=z4=1/2, z3=0 

For the opposite questions we have ff~ = 1 - x i ,  and so on. 
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As was proposed, let our coupled system described by the graph G be 
in the state (dpq)--the eigenstate for the value - 1 of the permutation opera- 
tor. The state d is not an eigenstate for any question. The direct computation 
of scalar products (q-lik) yields 

dpq -~- 

104/ 1/4 I/2 1/4 
0 1/4 1/2 

1/2 1/4 0 1/4 

1/4 1/2 1/4 0 

Now form the product questions occurring in (6.1). They are all factorizable 
and are calculated as pairwise products. For example, the collection of 
weights associated with the question X~ Y2 is {Cik}, Cik =xj (1 --Yk), where the 
values of x; and Yk are taken from (6.2). 

The collection of weights associated with three questions from (3.1) are 
substituted into (4.1) to get the values of transition probabilities, which in 
our case are equal to 

P(XI, Y2) = (1 - c o s  a)/2 

e ( x j z 2 )  = 1/2 

P(YjZ2) = (1 +sin a)/2 

I fa  is such that 1-cos a sin a, the inequality (3. I) is violated. We empha- 
size that the demonstrated violation of Bell's inequalities is essentially caused 
by the nondistributivity of the property lattice. 

7. BOOLEIZATION THROUGH MEASUREMENT, 
THE ROLE OF CONSCIOUSNESS 

One of the fundamental problems in quantum theory is the problem of 
measurement. London and Bauer (1939) discussed the idea that its solution 
is due to the special property of consciousness--its capacity for introspec- 
tion. Introspection means the knowledge as an unambiguous identification 
of one's state of mind and it leads to wave packet reduction, so that probabil- 
ities appear. Here we develop this idea further. We connect introspection 
with the Boolean logic of the mind. Thus, if one considers the system: 
particle + apparatus + observer with mind, wave packet reduction appears. 
This is because the Boolean-minded observer (being part of a non-Boolean 
system) projects the whole onto his or her Boolean structure, which possesses 
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the usual probability calculus. So it is the discrepancy between the non- 
Boolean strucure of  the world and the Boolean nature of  mind that leads to 
wave packet reduction. 

The Booleization (projection of  non-Boolean structure onto its Boolean 
substructure) is made by means of  time. For instance, one can have the idea 
that both time and movement in time are "invented" by the Boolean mind 
in order to grasp the non-Boolean nature of  the world as well as the body 
with which this mind is intimately connected. 

To understand this, consider as an example the system of two spin-l /2 
particles and their spin projections S++I and S+,2 on the z axis only. Construct 
the non-Boolean lattice of  this system introducing the elementary questions 
corresponding to the following vectors in H =  H, | 

< l l=e le , ,  <21=e,e2 
(7.1) 

(31 = (1/v/2)(ele2 - e2el), (41=eze,, <51 =e2e2 

Constructing the graph associated with the subspaces 1-5 in accordance 
with Section 1, we can see that the property lattice generated by this graph 
is isomorphic to the Boolean lattice 24 (generated by the graph of  four 
disjoint vertices 1, 2, 4, 5). See Figure 1. 

We need an ortholattice possessing the negative logic that we perman- 
ently apply (namely, the identification of  a property by checking its oppos- 
ite). In order to obtain the ortholattice, we shall take not the sublattice of 
L(K), but the suborthoposet of  the ortholattice L(H) built in Section 4. 
The suborthoposet constructed, call it M, is generated by the considered 
properties 1, 2 . . . . .  5 which are associated with the following elements of  
LCH): 

1~-,{11}, 2F+{13}, 3~-*{q_}, 4~--*{31}, 5~-+{33} 

The lattice M is constructed as the lattice 2 4 generated by elements 1, 
2, 4, 5 with two additional elements 3 and 3 • which are connected with 
other elements as shown in Figure 2. Due to the presence of  these additional 
elements, M is non-Boolean, and thus one cannot define a usual probability 
measure on it; instead, we introduce some weights. For example, for a singlet 
state one can have the following collection of weights {wi} : 

w,= ws=o, w2=w+=l/2, W3=l 

Fig. 1. 

1 -  2 ~  1.  *._2 
a) .  ~  ~0 3 b ' .  ~ I "  ~ o ~  3 

~, o .'+ 5 �9 / \ o  - ' r  

(a) The graph associated with the collection (7.1). (b) The graph generating the 
ortholattice M. 
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Fig. 2 

Due to nondistributivity 

2 = 2 ^  (4v3)  # (2  ^4)  v ( 2 ^ 3 ) = 0 v 0 = 0  

The property 1 v 2 corresponds to the observation of S~ ~) = + 1/2 without 
the observation of anything for a second particle. The occurrence of 
S~ ~)= +1/2 does not mean that 2 occurs, because w; are not probabilities, 
and thus 2 cannot be called an event in the described experimental situation. 

It is only if one "neglects" the element 3 that one obtains probabilities 
corresponding to a Boolean lattice. In order to "neglect" 3, the observer 
considers some other moment of time, so that 3 is now in the past and only 
1, 2, 4, and 5 are actual at the present moment. This corresponds to the 
usual preparation and measurement procedures in quantum mechanics. For- 
mally this can mean that we have a Hilbert space with a superselection 
rule associated with time. One can say that there are two Hilbert spaces 
parametrized by time moments tl and tz, so that performing the measure- 
ments commutes with the permutation operator at moment t~ and with the 
local operators S=(1) and S.(2) at moment t2. The Boolean observer prepares 
the system at moment t~ and obtains with probabilities 1/2 these or those 
values of ~(1) ,  S_.(2) at moment t2. 

This corresponds to the well-known problem (D'Espagnat, 1976) in the 
EPR experiments. Let the two-particle system be prepared in the singlet 
state. One of the two observers observes a spin S equal to +1/2 for one 
particle and with probability equal to 1 ~ (as he calls it) says that the other 
particle now has ~ = - 1 / 2 .  But this statement for the other particle is not 
an event in Minkowski space-time, but only an "objectively existing poten- 
tiality" (Fock, 1965). But if the other also looks at the other particle and 
checks whether S ~ = - 1 / 2  (indeed it cannot be anything else, since this is 
2 v 5), then one concludes that the state of the two-particle system is { 13}. 
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This conclusion does not depend on weights, but is just the consequence 
of the structure of the lattice [see also Bitbol (1983) for the many-world 
interpretation]. So, it is for Boolean observers that events appear. 

One can go still further and take an ensemble of copies of elements 
which are enumerated by time t: 

This ensemble of copies of the same quantum system is often used as a 
claim for the Everett-Wheeler-DeWitt many-world interpretation (Everett, 
1957). However, here we interpret it in the other way, as a method of 
"Booleization" of non-Boolean logics. 

It is well known that I~')o~ is an eigenstate for different "frequency 
operators." These frequency operators are in one-to-one correspondence 
with all noncommuting observables of the system, for example, A, B such 
that [A, B] ~0  are associated with frequency operators 

N 

f ~ =  lim • i, . . . i, li,, 1 ) . . .  l i , , N ' ) ( 1 / N )  ~ 6kt, 
n ~ o o  a = l  

x (i,, NI" "" (i, ,  II 
N 

f ~ =  lim ~ j l " "  "AIJl, 1>.. .  IA,N>(1/N) Z ,~kjo 
r t  ~ c'~3 a =  | 

x (A, NI '"  " ( j , ,  I I 

where I/k), Ijk) are the eigenstates of A, B, respectively. 
k k ^ A 

Due to the 1 I N  factor, the operators f ~ a n d  f8  do commute, A, B do 
not. So, a nondistributive lattice containing A, B corresponds to a distribu- 
tive lattice where instead of A,  B we have appropriate frequencies. It is also 
important that the "Booleization" is possible when N ~ o% which corre- 
sponds to the continuous limit, so time must be continuous: Macroscopic 
observers observe these frequencies as macroscopic events. 

8. SUMMARY 

Two-particle quantum systems with spin can be simulated by classical 
automata described by graphs. These graphs are associated with nondistribu- 
tive property lattices of these quantum systems. We emphasize that to non- 
local properties of a quantum system being in a certain eigenstate of the 
permutation operator there correspond merely some additional vertices in 
the graph which have nothing "nonlocal" in their nature. This leads to the 
possibility of violating Bell's inequalities in classical systems described by 
graphs (see Section 6) without violating relativity theory. 

The subjective interpretation of quantum mechanics of von Neumann, 
London, and Bauer can be connected with the Boolean nature of mind 



Macroscopic Realizations of Quantum Logics 1687 

grasping the non-Boolean nature of the world, which results in the projection 
postulate: wave packet reduction. A simple example is given for a two- 
particle system with spin. 
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